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Abstract
A countable set of asymptotic space-localized solutions is constructed for a 3D
Hartree-type equation with a quadratic potential by the complex germ method in
the adiabatic approximation. The asymptotic parameter is 1/T , where T � 1
is the adiabatic evolution time. A generalization of the Berry phase of the
linear Schrödinger equation is formulated for the Hartree-type equation. For
the solutions constructed, the Berry phases are found in an explicit form.

PACS numbers: 02.30.Jr, 03.65.Sq

1. Introduction

In the course of adiabatic evolution, a quantum system returns to its initial state and the
wavefunction gains only a phase factor. Berry has revealed [1] that the total phase contains,
along with the dynamic part known from the Born–Fock adiabatic theorem [2–4], a geometric
additive component (geometric phase (GP)). This summand in the total phase is known as
the adiabatic phase or the Berry phase. The adiabatic phase is closely connected with the
Floquet problem for systems of differential equations with periodic coefficients. In quantum
mechanics, geometric phases are well investigated for the linear Schrödinger equation [2, 5, 6].
In classical mechanics, a Hannay angle is introduced for nearly integrable Hamiltonian systems
with adiabatically varying parameters. The Hannay angle is related to the Berry phase [7] if
the Hamiltonian system corresponds to the quantum system under consideration. The Hannay
angle is defined as an additional term to the ‘angle’ variable when the Hamiltonian system is
described in terms of ‘action–angle’ variables [8, 9].

Geometric phases are observable and they show up in various physical phenomena
[10–14]. It is believed that in quantum calculations [15, 16], intensely developing at present,
the Berry phase might be used in some types of quantum gate, the so-called geometric gates
[17]. The geometric gates offer some advantages over the conventional (non-geometric) phase
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gates owing to their greater fault tolerance. An example of practical realization of geometric
gates based on nuclear magnetic resonance is given in [18]. To build hardware for a quantum
computer, systems of cooled ions in a Paul trap can be used [16]. In such a system, each ion
carries a qubit, and a logic operation (gate) is governed by an external electromagnetic field
created by laser radiation, a magnetic field source, etc. It should be noted that a Paul trap can be
described by the potential of a harmonic oscillator [11, 16]. One should also take into account
the collective coupling of ions, as the ion states depend not only on the external field, but also
on the collective behavior of the ions [16]. A consideration of the coupling between parts
of a system naturally leads to nonlinear models. An example of such a system might be the
Bose–Einstein condensate (BEC) whose models use the Gross–Pitaevskii equation [19, 20].
This is an argument in favor of studying models of this type bearing in mind their applications.

Here, we continue our investigations [21, 22] of the geometric phases for the one-
dimensional Hartree-type equation. The goal of the present work is to find the Berry phase
for a many-dimensional Hartree-type equation of the following form:

{−ih̄∂t + Ĥ�(R(t),�)}� = 0, (1.1)

Ĥ�(R(t),�) = Ĥ(R(t)) + �V̂ (�), (1.2)

Ĥ(R(t)) = 1

2m(t)

(
�̂p − e

c
�A(�x, t)

)2

+
ρ(t)(〈�x, �̂p〉 + 〈 �̂p, �x〉)

2
+

k(t)�x2

2
, (1.3)

V̂ (�) =
∫

R
3

d�yW(�x, �y)|�(�y)|2, (1.4)

�A(�x, t) = 1

2
[ �H(t), �x]. (1.5)

Here, �x ∈ R
3, �̂p = −ih̄∂/∂ �x, t ∈ R

1, ∂t = ∂/∂t ; m(t), k(t) and ρ(t) are the time-dependent
parameters of the system, �H(t) = {H1(t),H2(t),H3(t)} is the external magnetic field; � is
the nonlinearity parameter; R(t)=(m(t), k(t), ρ(t), �H(t)); 〈�a, �b〉 and [�a, �b] are, respectively,
the scalar and the vector product in R

3.
The operator Ĥ(R(t)) consists of summands having a well-defined physical meaning.

The operator Ĥ(R(t)) can be considered the Hamiltonian of a quantum system in the external
field of a generalized harmonic oscillator and the homogeneous magnetic field specified by a
vector potential �A(�x, t). The presence of a magnetic field reduces the symmetry of a quantum
system, removing its degeneration, which, in turn, results in some physical effects, such as
the normal Zeeman effect [23], etc. The summand k(t)x2/2 can be considered a model of a
spherical Paul trap for cooled ions [11]. The operator (〈�x, �̂p〉 + 〈 �̂p, �x〉) is essential in the study
of the squeezed states of a system in the field of a harmonic oscillator and, thus, the nontrivial
Berry phase, in various physical problems (see [24, 25] for details). The nonlinear term
(1.4) is responsible for the coupling of the system particles in the mean-field approximation
(see, e.g., [4]). The coupling potential W(�x, �y) is assumed to be a smooth function of
its arguments, which possesses the property of permutable and coordinated invariance, i.e.
W(�x, �y) = W(�y, �x),W(�x, �y) = W(�x + �q, �y + �q).

To construct the leading term of a solution asymptotic in a small parameter h̄, the quadratic
approximation of the coupling potential W(�x, �y) = 1/2[a(t)�x2 +2b(t)〈�x, �y〉+c(t)�y2] is shown
to be sufficient in the class of functions localized in the neighborhood of a phase trajectory (see
[26, 27]). We consider the parameters a(t), c(t) and b(t) to be time dependent for mathematical
generality. Symmetry properties of the potential W(�x, �y) result in a(t) = c(t) = −b(t).

We construct the solutions of equation (1.1) in the adiabatic approximation and obtain the
Berry phases for a system of coherent ions subject to their mutual interaction and periodical
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dependence of the nonlinear Hamiltonian Ĥ�(R(t),�) (1.2). Hereinafter, we imply by R(t)

a set of parameters: R(t) = (m(t), k(t), ρ(t), �H(t), a(t), b(t), c(t)).
The study of the geometric phase for charged particles in harmonic potential traps in the

presence of a magnetic field is a problem of widespread interest [11, 28–30]. Nonlinear models
for systems of interacting charged particles are discussed in the context of the elaboration of
the element base for quantum computers. In [31], the quantum fidelity decay in a system of
charged particles was studied within the framework of the mean-field approximation. It has
been found that an ensemble of interacting charged particles is more stable to perturbations
than a single-particle system and this can bring into existence qubits based on coherent
ensembles of interacting particles. Thus, the mathematical modeling of geometric gates for
such qubits becomes a topical problem, and our research makes a contribution to the study of
these mathematical models.

In the development of analytic methods in the geometric phase theory, the key point is the
integrability of nonlinear partial differential equations with variable coefficients. This problem
requires particular mathematical ideas and constructions. The well-known inverse scattering
transform method [32, 33] is applied mainly to (1+1)D and (1+2)D nonlinear equations with
constant coefficients, and only soliton solutions can be constructed in an explicit form. The
symmetry analysis [34, 35] allows one to study systems possessing high symmetry, but the
evaluation of the degree of symmetry is inconvenient if the equation contains nonlocal terms.
Nonlinear problems of the above class could be solved efficiently by the method developed
in [26, 27], where asymptotic solutions (in some cases, exact solutions) are constructed
for a nonlinear Hartree-type equation which is a Gross–Pitaevskii equation with a nonlocal
nonlinearity.

This paper is organized as follows. In section 2, necessary designations and definitions
are introduced for the Berry phase. In section 3, a method of seeking an exact solution for a
Hartree-type equation with a quadratic Hamiltonian is briefly described. Section 4 presents
the solution of the spectral problem for an instantaneous Hartree-type operator. The solution
is used to extract the dynamic phase from the overall phase. In section 5, the solutions of the
Hartree-type equation are constructed in the adiabatic approximation and the corresponding
Berry phases are found. In the conclusion, the results and related problems are discussed.

2. The Berry phase for the nonlinear equation

In this work, we find the Berry phase using the approach developed in [36, 37] for linear
quantum equations. This approach is based on seeking an exact (or approximate) solution of
the Cauchy problem for equation (1.1),

�|t=0 = ψν(�x,R(0)), (2.1)

which then is expanded in the adiabatic parameter. Here, the functions ψν(�x,R(0)) are
determined by the spectral problem for the instantaneous Hartree-type operator

Ĥ�(R(t))ψν(�x,R(t)) = Eν(R(t))ψν(�x,R(t)). (2.2)

Assume that the parameters R(t) are T-periodic and slowly vary with time3. Following
the adiabatic theorem in (linear) quantum mechanics [4], we seek a solution of the Cauchy

3 A system is assumed to be adiabatic if the following condition is fulfilled:

max
i=1,n

Ṙi

T

Ri

� 1, (2.3)

where Ri are the parameters of the Hamiltonian (see, e.g., [38]).
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problem (1.1), (2.1) in the form

�(�x, t) = exp[iφν(t)]ψν(�x,R(t)) + O

(
1

T

)
. (2.4)

Then for t = T , taking into account that R(T ) = R(0), we have

�(�x, T ) = exp[iφν(T )]�(�x, 0) + O

(
1

T

)
. (2.5)

Let us rewrite the phase φν(T ) as

φν(T ) = δν(T ) + γν(T ), (2.6)

where δν(T ) is the dynamic phase, which is defined by the relation

δν(T ) = −1

h̄

∫ T

0
Eν(R(t)) dt. (2.7)

Following [1] (see also [5, 6, 22]), we call the phase γν(T ) the adiabatic Berry phase or
geometric phase for equation (1.1). The Berry phase for the linear Schrödinger equation
(� = 0 in (1.2)) is determined by

γ lin
ν (T ) = i

∫ T

0
〈ψν(�x,R(t))|ψ̇ν(�x,R(t))〉 dt. (2.8)

Formula (2.8) is equivalent to (2.6) in the linear case and requires an additional substantiation
for nonlinear equations.

3. Method of semiclassically concentrated functions

We consider exact solutions for equation (1.1), following [26, 27]. From these solutions we
find solutions of the form (2.4) and thus obtain the Berry phase.

Define the mean value for a linear operator Â in a state �(t) as

〈Â(t)〉 = A�(t, h̄) = 1

‖�(t)‖2
〈�(t)|Â|�(t)〉

= 1

‖�(t)‖2

∫
R

3
d�x �∗(�x, t, h̄)Â(t)�(�x, t, h̄), (3.1)

where ‖�(t)‖2 = 〈�(t)|�(t)〉. For the solutions �(t) of equation (1.1) we have

d〈Â(t)〉
dt

=
〈

∂Â(t)

∂t

〉
+

i

h̄
〈[Ĥ�(t, �(t)), Â(t)]−〉, (3.2)

where [Â, B̂]− = ÂB̂ − B̂Â is the commutator of linear operators Â and B̂.
As in the linear case, we call equation (3.2) an Ehrenfest equation. The norm of a solution

of equation (1.1) does not depend on time, i.e.

‖�(�x, t)‖2 = ‖�(�x, 0)‖2 = ‖�‖2.

Then it is convenient to change the constant � by a constant �̃ = �‖�‖2.
Let us write the Ehrenfest equation for the mean values of the operator ĝ:

ĝ =
(

ẑj ,
1

2
(
ẑk
ẑl + 
ẑl
ẑk); j, k, l = 1, 6

)ᵀ
;

(3.3)
ẑm = p̂m, ẑm+3 = xm, m = 1, 3,
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where 
ẑk = ẑk − zk�(t, h̄), zk�(t, h̄) = 〈ẑk〉. As a consequence, we obtain for the first- and
second-order moments

ż� = JHz(g�,R(t)),


̇2� = JHzz(R(t))
2� − 
2�Hzz(R(t))J, 

ᵀ
2� = 
2�, J =

(
0 −I3×3

I3×3 0

)
,

(3.4)

Hz(g�,R(t))=
 �p�

m(t)
+ ρ(t)�x� − e

2m(t)c
[ �H(t), �x�]

k1(t)�x� + ρ(t) �p� + e
2m(t)c

[ �H(t), �p�] + e2

4m(t)c2 [ �H(t), [�x�, �H(t)]]

, (3.5)

Hzz(R(t)) =
(
Hpp(R(t)) Hpx(R(t))

Hᵀ
px(R(t)) Hxx(R(t))

)
, (3.6)

Hpp(R(t)) = 1

2m(t)
I3×3, Hpx(R(t)) = e

2m(t)c


2m(t)ρ(t)c

e
H3(t) −H2(t)

−H3(t)
2m(t)ρ(t)c

e
H1(t)

H2(t) −H1(t)
2m(t)ρ(t)c

e

 ,

(3.7)

Hxx(R(t)) = e2

4m(t)c2

×


�H 2(t) − H 2

1 (t) + 4m(t)k̃(t)c2

e2 −H1(t)H2(t) −H1(t)H3(t)

−H2(t)H1(t) �H 2(t) − H 2
2 (t) + 4m(t)k̃(t)c2

e2 −H2(t)H3(t)

−H3(t)H1(t) −H2(t)H1(t) �H 2(t) − H 2
3 (t) + 4m(t)k̃(t)c2

e2

 .

(3.8)

Here J is a standard symplectic matrix, In×n is an identity matrix of dimension n,Bᵀ is the
transpose to the matrix B; k1(t) = k(t) + �̃(a(t) + b(t)), k̃(t) = k(t) + �̃a(t).

The matrix of the second centred moment 
2� has the form


2�(t, h̄) =
(

σ�
pp(t, h̄) σ�

px(t, h̄)

σ�
xp(t, h̄) σ�

xx(t, h̄)

)
, (3.9)

where

σ�
pp(t, h̄) = ∥∥σ�

pkpl
(t, h̄)

∥∥
3×3 = ‖〈
p̂k
p̂l〉)‖3×3,

σ�
xx(t, h̄) = ∥∥σ�

xkxl
(t, h̄)

∥∥
3×3 = ‖〈
xk
xl〉‖3×3,

σ�
xp(t, h̄) = ∥∥σ�

xkpl
(t, h̄)

∥∥
3×3 = ∥∥ 1

2 〈
xk
p̂l + 
p̂l
xk〉
∥∥

3×3.

k, l = 1, 3

We call the system of equations (3.4) the second-order Hamilton–Ehrenfest system (HES)
corresponding to equation (1.1).

The matrix of the second centred moments4 
2 can be rewritten as


2(t) = A(t)
2(0)A+(t), (3.10)

where A(t) is the fundamental matrix of the system in variations, i.e.

Ȧ = JHzz(R(t))A, A(0) = I6×6. (3.11)

4 The subscript � can be omitted.
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We denote the general solution of the system (3.4) by g(t,C) = (Z(t,C),
2(t,C)), where
Z(t,C) = ( �P(t,C), �X(t,C)), and C is the set of integration constants C = (c1, . . . , cN),N is
the number of linearly independent equations of system (3.4).

Let us seek a solution of equation (1.1) in terms of the anzats

�(�x, t, h̄) = ϕ

(

�x√

h̄
, t,

√
h̄

)
exp

[
i

h̄
(S(t, h̄) + 〈 �P(t, h̄),
�x〉)

]
. (3.12)

Here, the function ϕ(�ξ, t,
√

h̄) belongs to the Schwartz space S in the variable �ξ = 
�x/
√

h̄ and
regularly depends on

√
h̄ (i.e. can be expanded in a Tailor series of

√
h̄); 
�x = �x− �X(t, h̄). The

real function S(t, h̄) and the vector function Z(t, h̄) = ( �P(t, h̄), �X(t, h̄)) are to be determined.
The Schwartz space is a space of rapidly decreasing indefinitely differentiable functions.

Let us expand the operators entering equation (1.1) in Taylor series of 
�x = �x −
�x�(t, h̄),
�y = �y − �x�(t, h̄) and 
 �̂p = �̂p − �p�(t, h̄). Then equation (1.1) takes the form

{−ih̄∂t + H(�, t) + 〈Hz(�, t),
ẑ〉 + 1
2 〈
ẑ,Hzz(t)
ẑ〉}� = 0, (3.13)

H(�, t) = H(g�(t, h̄), R(t)) = �p2
�(t, h̄)

2m(t)
+ ρ(t)〈�x�, �p�〉

+
k0(t)�x2

�(t, h̄)

2
− e

2m(t)c
〈[ �H(t), �x�(t, h̄)], �p�(t, h̄)〉

+
e2

8m(t)c2

[ �H 2(t)�x2
�(t, h̄) − (〈 �H(t), �x�(t, h̄)〉)2

]
+

3∑
k=1

�̃

2
c(t)σ�

xkxk
(t, h̄),

(3.14)

Hz(�, t) = Hz(g�(t, h̄), R(t)), Hzz(t) = Hzz(R(t)). (3.15)

Here 
ẑ = (
 �̂p,
�x), k0(t) = k(t) + �̃(a(t) + 2b(t) + c(t)); the vector Hz(g�,R(t)) and
matrix Hzz(R(t)) are given by (3.5), (3.6), respectively.

Let us relate the nonlinear equation (3.13) with the linear equation that is obtained from
(3.13) by formal replacement of the mean values of the operators of coordinates, momenta
and centred moments of the second order, g�(t, h̄), by the general solution g(t,C) of the
Hamilton–Ehrenfest system (3.4),{−ih̄∂t + H(t,C) + 〈Hz(t,C),
ẑ〉 + 1

2 〈
ẑ,Hzz(t)
ẑ〉}� = 0,
(3.16)

H(t,C) = H(�, t)|g�(t)→g(t,C), Hz(t,C) = Hz(�, t)|g�(t)→g(t,C).

We call equation (3.16) the associated linear Schrödinger equation. We can immediately
verify that the function

�0(x, t,C) = |0, t,C〉 = Nh̄

(
det C(0)

det C(t)

)1/2

× exp

{
i

h̄

(
S(t,C) + 〈 �P(t,C),
�x〉 +

1

2
〈
�x,Q(t)
�x〉

)}
, (3.17)

where

S(t,C) =
∫ t

0
(〈 �P(t,C), �̇X(t,C)〉 − H(t,C)) dt, (3.18)

is a solution of equation (3.16). Here Q(t) = B(t)C−1(t); B(t) and C(t) designate the
‘momentum’ and the ‘coordinate’ part of the matrix solution of the system in variations (see
[39]) corresponding to the linear equation (3.16):{

Ḃ = −Hxp(t)B − Hxx(t)C,

Ċ = Hpp(t)B + Hpx(t)C.
(3.19)
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Let us write a matrix

A(t) =
(

B(t)

C(t)

)
. (3.20)

Note that A(t) = A(t)A(0), where A(t) is defined by (3.11). The matrix A can be represented
as

A = (a1, a2, a3), (3.21)

where {ak} is a set of linearly independent vectors being solutions of the equation

ȧk = JHzz(t)ak, k = 1, 3. (3.22)

An operator5

â(t) = Na〈a(t), J
ẑ〉 (3.23)

is a symmetry operator for equation (3.16), if the vector a(t) is a solution of the system in
variations (3.22) [39]. Let â(t) and b̂(t) be the symmetry operators corresponding to the two
solutions of the system in variations, a(t) and b(t), respectively. Then it is easy to verify that

[â(t), b̂(t)]− = −ih̄NaNb{a(t), b(t)} = −ih̄NaNb{a(0), b(0)}. (3.24)

The last equality of (3.24) is due to the Hamiltonian form of system (3.22). By braces we
designate the skew-scalar product of two vectors {a, b} = 〈a, J ᵀb〉.

Assume that the system in variations (3.22) admits a set of three linearly independent
complex solutions ak(t) = ( �Wk(t), �Zk(t)) satisfying the skew-orthogonal condition

{ak(t), al(t)} = 0, {ak(t), a
∗
l (t)} = 2iδkl, k, l = 1, 3. (3.25)

Recall that the six vectors ak(t) and a∗
k (t), k = 1, 3, serve as a symplectic basis in C

6
a , and

the three-dimensional plane r3(Z(t,C)) with the basis ak(t) constitutes a complex germ on
z = Z(t,C) [40–42].

Setting Nj = (2h̄)−1/2 in formula (3.23), we compare the vectors a∗
j (t) with the ‘creation’

operators â+
j (t) and the vectors aj (t) with the ‘annihilation’ operators âj (t). Then, taking into

account (3.24), we obtain for the operators â+
j (t), âj (t) the bosonic commutation relations

[âj (t), âk(t)]− = [â+
j (t), â+

k (t)
]
− = 0,

[
âj (t), â

+
k (t)
]
− = δjk, j, k = 1, 3. (3.26)

Statement 1. Let aj (t) = ( �Wj(t), �Zj(t)) be solutions of the problem (3.22), (3.25). Then the
function �0(�x, t,C) = |0, t,C〉 (3.17) is a ‘vacuum’ trajectory-coherent state

âj (t,C)|0, t,C〉 = 0, j = 1, 3, (3.27)

for the associated linear Schrödinger equation (3.16).

Proof. Applying the ‘annihilation’ operator âj (t) to the function |0, t〉, we find that

âj |0, t〉 = |0, t〉[〈 �Zj(t),Q(t)
�x〉 − 〈 �Wj(t),
�x〉].
It follows immediately that (3.27) is true as, according to the definition and properties of the
matrix Q(t), we have

Q(t) �Zj(t) = B(t)C−1(t) �Zj(t) = �Wj(t).

5 For simplicity we omit h̄ and C in designations of operators and functions.
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Let us define now a countable set of states |ν, t,C〉 (exact solution of equation (3.16)) as
a result of the action of the ‘creation’ operators on the ‘vacuum’ state |0, t,C〉 (3.17),

�ν(�x, t,C) = |ν, t,C〉 = 1√
ν!

(â+(t,C))ν |0, t,C〉

=
3∏

k=1

1√
νk!

(
â+

k (t,C)
)νk |0, t,C〉, ν = (ν1, ν2, ν3). (3.28)

Note that, in view of the explicit form of the ‘vacuum’ state (3.17) and symmetry operators
(3.23) for the functions �ν(�x, t) (3.28) constituting the Fock basis, the following representation
is true:

�ν(�x, t) = Nν�0(�x, t)Heν(�ζ (R, t), t). (3.29)

Here, Heν(�ζ (R, t), t) are many-dimensional Hermite polynomials, which are set by the matrix
W(t) (see [43] for details),

Heν(�ζ (R, t), t) = (−1)|ν|
(

∂

∂�ζ − 2W(t)�ζ
)ν

· 1, Nν =
(

1√
2

)|ν| 1√
ν!

; (3.30)

�ζ (R, t) = −i√
h̄

(C∗(t))−1
�x, W(t) = C+(t)(C−1(t))ᵀ. (3.31)

The functions �ν(x, t,C) are solutions of equation (3.13) provided that C are chosen, so that
the solutions g(t,C) of the Hamilton–Ehrenfest system (3.4) coincide with the corresponding
mean values g�ν

(t, h̄,C) for the states (3.28) at t = 0 (see [44]).
Let us designate this set of parameters by Cν ; then we have

�ν(x, t, h̄) = �ν(x, t,Cν). (3.32)

The subscript ν in Cν indicates that for each function �ν(x, t, h̄) there exists its own set of
parameters Cν .

The construction of solutions (3.32) uses solutions of two auxiliary ordinary differential
systems: the Hamilton–Ehrenfest system (3.4) and the system in variations (3.22).

For an arbitrary time dependence of the coefficients R(t), the solutions of these systems
are unknown. However, if the system parameters depend on time adiabatically, we can seek
a solution of the Hamilton–Ehrenfest system and system in variations in the form of a power
series in the adiabatic parameter, for which 1/T is taken. These solutions allow one to
construct the leading term of the asymptotics in the parameter 1/T of equation (1.1). For the
solutions of this type, the Berry phase can be found in an explicit form. �

4. The spectral problem

Consider the spectral problem (2.2) to state the Cauchy problem (1.1), (2.1) and find the
dynamic phase by (2.7).

The solution of the spectral problem can be obtained from the non-stationary Hartree-
type equation (1.1), where the operator Ĥ�(R(t),�(t)) is replaced by Ĥ�(R,�(t)) with
R = const. The solutions of equation (1.1), which have the form

�(�x, t) = exp

{
− i

h̄
Eν(R)t

}
ψν(�x,R), (4.1)

give a solution of the spectral problem (2.2). Here ψν(�x,R) and Eν(R) are the eigenfunctions
and the eigenvalues of the instantaneous Hamiltonian Ĥ�(R,ψν(R)), respectively.
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The spectral problem is related to the stationary solutions (ġ(t,C) = 0) of the Hamilton–
Ehrenfest system (3.4) written for the stationary nonlinear Hamiltonian Ĥ�(R,ψ). The
solutions of (3.4) determine a stationary point g(R,Cs) in the corresponding extended phase
space. Here Cs designates a subset of constants separated from the set C by the condition of
stationarity of the solutions of the Hamilton–Ehrenfest system (see [22]). From

JHz(g, R) = 0,

it follows that �P(R,Cs) = 0, �X(R,Cs) = 0.
The solutions of the Hamilton–Ehrenfest system for the second-order moments are

obtained from solutions of the system in variations according to (3.10).
The linearly independent solutions of equation (3.22), normalized by the skew-

orthogonality condition (3.25), can be written as

aη(t) = ei�ηtfη(R), a3(t) = ei�3t f3(R); (4.2)

fη(R) =
√

m(iρ+ωa)√
2ωa

(i�eϕ + (−1)η�eθ )

1√
2mωa

(�eϕ − i(−1)η�eθ )

 , f3(R) =
−

√
m(ρ−i�3)√

�3
�en

1√
m�3

�en

 . (4.3)

Here we have used the notation
�en = (cos ϕ sin θ, sin ϕ sin θ, cos θ),

�eϕ = (sin ϕ,− cos ϕ, 0),

�eθ = (cos ϕ cos θ, sin ϕ cos θ,− sin θ),

(4.4)

�η(R) = (−1)η
ωc(R)

2
+ ωa(R); �3(R) =

√
k̃

m
− ρ2, (4.5)

where

η = 1, 2; ωc(R) = eH

mc
; ωa(R) =

√
e2H 2

4m2c2
+

k̃

m
− ρ2. (4.6)

The unit vector �en specifies the direction of the magnetic field, and the set of vectors {�eϕ, �eθ , �en}
constitutes an orthonormal basis in R

3. We suppose that the frequencies �1,�2,�3 do not
satisfy the resonance relation l1�1 + l2�2 + l3�3 = 0, where l1, l2, l3 are integers.

The stationary solution 
2(R,Cs) can be shown to exist if the solutions of the system in
variations can be represented in the form (4.2) (see [45]).

Note that, according to (4.2), the matrices B(t) and C(t) can be written as

B(t) = B̃(R)�(t) = GB̃0(R)�(t), C(t) = C̃(R)�(t) = GC̃0(R)�(t), (4.7)

where

B̃0(R) =


−

√
m(ρ−iωa)√

2ωa
−

√
m(ρ−iωa)√

2ωa
0

−
√

m(iρ+ωa)√
2ωa

√
m(iρ+ωa)√

2ωa
0

0 0 −
√

m(ρ−i�3)√
�3

 , (4.8)

C̃0(R) =


1√

2mωa

1√
2mωa

0
i√

2mωa

−i√
2mωa

0

0 0 1√
m�3

 , (4.9)
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�(t) = diag{exp(i�1(R)t), exp(i�2(R)t), exp(i�3(R)t)}, (4.10)

G = (�eϕ, �eθ , �en) =
 sin ϕ cos ϕ cos θ cos ϕ sin θ

−cos ϕ sin ϕ cos θ sin ϕ sin θ

0 −sin θ cos θ

 . (4.11)

It is easy to verify that the matrix G is orthogonal.
In view of the relations

S(t,Cs) = − �̃

2

3∑
k=1

cσxkxk
(R,Cs)t, (4.12)

det C(t) = −i

m3/2�
1/2
3 ωa

exp{i(�1 + �2 + �3)t}, (4.13)

Q(R) = GQ0(R)Gᵀ, Q0(R) = diag{m(iωa − ρ),m(iωa − ρ),m(i�3 − ρ)}, (4.14)

Nh̄(det C(0))1/2 = (πh̄)−3/4, (4.15)

we obtain from (3.17) the vacuum solution of the associated linear Schrödinger equation

�0(�x, t,Cs) =
√

im3/4�
1/4
3 ω

1/2
a

(πh̄)3/4

× exp

{
i

h̄

(
− �̃

2

3∑
k=1

cσxkxk
(R,Cs)t − h̄

2

3∑
k=1

�kt +
1

2
〈�χ,Q0(R)�χ〉

)}

= exp

{
− i

h̄

(
�̃

2

3∑
k=1

cσxkxk
(R,Cs)t +

h̄

2

3∑
k=1

�kt

)}
φ0(�x,R,Cs). (4.16)

Here �χ = Gᵀ�x. In view of (3.29) and (4.7), we have

�ν(�x, t,Cs) =
(

1√
2

)|ν| 1√
ν!

exp

{
− i

h̄

(
�̃

2

3∑
k=1

cσxkxk
(R,Cs)t +

3∑
k=1

h̄�k

(
νk +

1

2

)
t

)}
×φ0(�x,R,Cs)Hν(�ξ(R)), (4.17)

where Hν

(�ξ(R)
)

are Hermite polynomials, which are set by the matrix W̃ (R). Here

�ξ(R) = −i√
h̄

(C̃∗(R))−1
�x = −i

√
m

2h̄


√

ωa i
√

ωa 0
√

ωa −i
√

ωa 0

0 0
√

2�3

 �χ, (4.18)

W̃ (R) = −C̃+
0 (R)(C̃−1

0 (R))ᵀ =
0 1 0

1 0 0
0 0 1

 . (4.19)

For the considered Hermite polynomials, the following relation results from (4.7):

Heν(�ζ (R, t), t) = exp

[
−i

3∑
k=1

�kνkt

]
Hν(�ξ(R), R). (4.20)

Evidently, to solve the spectral problem under study, it suffices to know only the sub-matrix
of the coordinate variances instead of finding the complete matrix of the second moments.
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The matrix of the coordinate variances calculated for the states �ν(�x, t,Cs) does not
depend on Cs , and the following formula is valid (see, e.g., [39]):

σ�ν

xx = h̄

4
[C̃(R)D−1

ν C̃+(R) + C̃∗(R)D−1
ν C̃ᵀ(R)], D−1

ν = ‖(2νj + 1)δkj‖3×3. (4.21)

Using (4.21), we find
3∑

k=1

σxkxk
(R,Cν) =

(
ν1 +

1

2

)
h̄

mωa

+

(
ν2 +

1

2

)
h̄

mωa

+

(
ν3 +

1

2

)
h̄

m�3
. (4.22)

Then, in view of (3.32), the solution of equation (1.1) is

�(�x, t) = �ν(�x, t,Cν) =
(

1√
2

)|ν| 1√
ν!

× exp

{
−i

3∑
k=1

(�k + �̃k)

(
νk +

1

2

)
t

}
Hν(�ξ(R))φ0(�x,R,Cν), (4.23)

�̃1(R) = �̃2(R) = �̃c

2mωa(R)
, �̃3(R) = �̃c

2m�3(R)
. (4.24)

Therefore, the eigenfunctions of the Hartree operator (1.2) are

ψν(�x,R) =
(

1√
2

)|ν| 1√
ν!

√
im3/4�

1/4
3 ω

1/2
a

(πh̄)3/4
exp

{
i

h̄

(
1

2
〈�χ,Q0(R)�χ〉

)}
Hν(�ξ(R)), (4.25)

and the corresponding eigenvalues are given by the expression

Eν(R) = h̄

3∑
k=1

(�k(R) + �̃k(R))

(
νk +

1

2

)
. (4.26)

5. The adiabatic approximation and the Berry phase

Assume that the evolution of a quantum system goes adiabatically. This implies that the
Hamiltonian parameters slowly vary with time (see (2.3)) and, along with the ‘fast’ time t
entering the time derivative operator, a ‘slow’ time s can be introduced which the Hamiltonian
parameters (R(t)=R(s)) depend on. Let the ‘fast’ and the ‘slow’ time be related as

s = t/T , (5.1)

where T is the evolution period of the system.
As mentioned above, to find a solution of equation (1.1) in the adiabatic approximation,

it is necessary to solve the Hamilton–Ehrenfest system and the system in variations accurate
to the second order in 1/T .

The Hamilton–Ehrenfest system can be written as
1

T
z′
� = JHz(g�,R(s)),

1

T

′

2� = JHzz(R(s))
2� − 
2�Hzz(R(s))J, 

ᵀ
2 = 
2,

(5.2)

where a′ = da/ds. We seek a solution of this system in the form

�Z(t) = �Z(0)(s) +
1

T
�Z(1)(s) + O

(
1

T 2

)
, 
2(t) = 


(0)
2 (s) +

1

T



(1)
2 (s) + O

(
1

T 2

)
,

(5.3)
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and obtain

�X(0)(s) = �X(1)(s) = 0, �P (0)(s) = �P (1)(s) = 0. (5.4)

As in the spectral problem, we obtain the solution of the Hamilton–Ehrenfest system for the
second-order moments using the solutions of the system in variations.

Making the change of variables by (5.1) to the system in variations (3.22), we obtain

1

T
a′(t) = JHzz(s)a(t). (5.5)

Let us seek a semiclassical asymptotic solution of the system (5.5) in the form

ak(t) = ei(T �k(s)+φk(s))fk(t) + O

(
1

T 2

)
, (5.6)

fk(t) = f
(0)
k (s) +

1

T
f

(1)
k (s), k = 1, 3. (5.7)

Substituting (5.6) into (5.5) and equating the coefficients of equal powers of 1/T , we obtain

(JHzz(s) − i�′
k(s))f

(0)
k (s) = 0,

(JHzz(s) − i�′
k(s))f

(1)
k (s) = f

(0)′
k (s) + iφ′

k(s)f
(0)
k (s).

Then

�′
k(s) = �k(s) = �k(R(s)), k = 1, 3 (5.8)

f (0)
η (s) = fη(R(s)), f

(0)
3 (s) = f3(R(s)), η = 1, 2, (5.9)

where the vectors fη(R(s)), f3(R(s)) and the functions �k(R(s)) are determined by (4.3) and
(4.5), respectively.

Let us decompose the vectors f
(1)
k (s) in the basis vectors f

(0)
k (s) and f

(0)∗
k (s):

f
(1)
k (s) =

3∑
m=1

αkm(s)f (0)
m (s) + βkm(s)f (0)∗

m (s). (5.10)

Then we obtain

φ′
k(s) = 1

2

{
f

(0)′
k (s), f

(0)∗
k (s)

}
, (5.11)

αkm(s) =
{
f

(0)′
k (s), f (0)∗

m (s)
}

2(�k(s) − �m(s))
, βkm(s) =

{
f (0)

m (s), f
(0)′
k (s)

}
2(�m(s) + �k(s))

. (5.12)

Note that

αkm(s) = −α∗
mk(s), βkm(s) = βmk(s) (5.13)

or, in a matrix form,

A(s) = −A+(s), B(s) = Bᵀ(s), (5.14)

where A(s) = ‖αkm(s)‖ and B(s) = ‖βkm(s)‖. By analogy with (4.7), we write

B(t) =
(

B̃(0)(s) +
1

T
B̃(1)(s)

)
�(0)(s, T ) + O

(
1

T 2

)
, (5.15)

C(t) =
(

C̃(0)(s) +
1

T
C̃(1)(s)

)
�(0)(s, T ) + O

(
1

T 2

)
, (5.16)
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�(0)(s, T ) = diag{T �1(s) + φ1(s), T �2(s) + φ2(s), T �3(s) + φ3(s)}. (5.17)

Here

B̃(0)(s)) = B̃(R(s)), C̃(0)(s) = C̃(R(s)),

B̃(1)(s) = B̃(0)(s)Aᵀ(s) + B̃(0)∗(s)Bᵀ(s),

C̃(1)(s) = C̃(0)(s)Aᵀ(s) + C̃(0)∗(s)Bᵀ(s).

The matrices B̃(0)(s) and C̃(0)(s) are determined by the vectors (5.9). Hereinafter we omit the
argument s or t if this does not lead to confusion.

Note that

φ′
1 = −(mρ)′

2mωa

+
1

2
(〈�e′

ϕ, �eθ 〉 − 〈�e′
θ , �eϕ〉), φ′

2 = −(mρ)′

2mωa

+
1

2
(〈�e′

θ , �eϕ〉 − 〈�e′
ϕ, �eθ 〉),

φ′
3 = −(mρ)′

2m�3
; Q(t) = Q(0)(s) + O

(
1

T

)
, Q(0)(s) = Q(R(s)).

For the matrices A and B we obtain

A =


α11 0 γ

2(�1−�3)
〈�e′

n, (−i�eϕ + �eθ )〉
0 α22

γ

2(�2−�3)
〈�e′

n, (−i�eϕ − �eθ )〉
γ

2(�3−�1)
〈�e′

n, (i�eϕ + �eθ )〉 γ

2(�3−�2)
〈�e′

n, (i�eϕ − �eθ )〉 α33

 ;

B =


0 (mρ−imωa)

′
4mω2

a

γ̃

2(�3+�1)
〈�e′

n, (−i�eϕ + �eθ )〉
(mρ−imωa)

′
4mω2

a
0 γ̃

2(�3+�2)
〈�e′

n, (−i�eϕ − �eθ )〉
γ̃

2(�3+�1)
〈�e′

n, (−i�eϕ + �eθ )〉 γ̃

2(�3+�2)
〈�e′

n, (−i�eϕ − �eθ )〉 (mρ−im�3)
′

4m�2
3

 .

Here

γ =
[√

�3

2ωa

+
√

ωa

2�3

]
, γ̃ =

[√
�3

2ωa

−
√

ωa

2�3

]
; (5.18)

the matrix elements α11, α22 and α33 are imaginary, and they are determined from the next-
order approximation. We do not give them in an explicit form as these functions do not
contribute to the leading term of the asymptotic expansion.

To construct the solutions of the nonlinear equation (1.1), we need the matrix of the
coordinate variances for the states �ν(�x, t,C) (3.28)

σ�ν

xx (t) = h̄

4

[
C(t)D−1

ν C+(t) + C∗(t)D−1
ν CT (t)

]
, (5.19)

and it suffices to know this matrix accurate to O(1/T 2):

σ�ν

xx (t) = σ (0)
xx (s) +

1

T
σ (1)

xx (s) + O

(
1

T 2

)
. (5.20)

Here

σ (0)
xx = h̄

4

[
C̃(0)D−1

ν C̃(0)+ + C̃(0)∗D−1
ν C̃(0)ᵀ], (5.21)

σ (1)
xx = h̄

4

[
C̃(0)D−1

ν C̃(1)+ + C̃(1)D−1
ν C̃(0)+ + C̃(0)∗D−1

ν C̃(1)T + C̃(1)∗D−1
ν C̃(0)T

]
= h̄

4

[
C̃(0)

{
AᵀD−1

ν − D−1
ν Aᵀ}C̃(0)+ + C̃(0)

{
D−1

ν B∗ + B∗D−1
ν

}
C̃(0)ᵀ

+ C̃(0)∗{D−1
ν A − AD−1

ν

}
C̃(0)ᵀ + C̃(0)∗{D−1

ν B + BD−1
ν

}
C̃(0)+

]
. (5.22)
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Similar to (4.22) we obtain

3∑
k=1

σxkxk
(t,Cν) =

(
ν1 +

1

2

)[
h̄

mωa

+
1

T

h̄(mρ)′

2m2ω3
a

]
+

(
ν2 +

1

2

)[
h̄

mωa

+
1

T

h̄(mρ)′

2m2ω3
a

]
+

(
ν3 +

1

2

)[
h̄

m�3
+

1

T

h̄(mρ)′

2m2�3
3

]
+ O

(
1

T 2

)
.

In view of this, a solution of the Cauchy problem (1.1), (2.1) can be represented in the form

�(�x, t) = �(0)
ν (�x, t) + O

(
1

T

)
, (5.23)

where

�(0)
ν (�x, t) = exp

{
− i

h̄
T

∫ s

0
Eν(τ) dτ + iγν(s)

}
ψν(�x,R(s)). (5.24)

The function (5.24) is a solution of equation (1.1) in the adiabatic approximation. Here
the functions ψν(�x,R(s)) are instantaneous eigenfunctions of Ĥ�(R(s), ψν(R(s))). The
quantities

Eν(s) = h̄

3∑
j=1

(�j (s) + �̃j (s))

(
νj +

1

2

)
(5.25)

are eigenvalues of the instantaneous Hartree-type Hamiltonian Ĥ�(R(s), ψν(R(s))) and γν(s)

is

γν(s) = −
∫ s

0

3∑
j=1

[
φ′

j (τ )

(
νj +

1

2

)
+

�̃c(τ )

2h̄

3∑
j=1

σ (1)
xj xj

(τ )

]
dτ

=
2∑

j=1

(
νj +

1

2

)∫ s

0

[
1 − �̃c(τ )

2m(τ)ω2
a(τ )

]
(m(τ)ρ(τ))′

2m(τ)ωa(τ )
dτ

+
(
ν3 +

1

2

) ∫ s

0

[
1 − �̃c(τ )

2m(τ)�2
3(τ )

]
(m(τ)ρ(τ))′

2m(τ)�3(τ )
dτ

+
1

2

(
ν2 − ν1

) ∫ s

0
〈e′

ϕ(τ ), eθ (τ )〉 − 〈e′
θ (τ ), eϕ(τ )〉 dτ. (5.26)

The functions �j(s), ωa(s) and �̃j (s) are defined by (4.5), (4.6) and (4.24), respectively. The
evolution of the function (5.24) in the period T is described by

�(0)
ν (�x, T ) = exp

{
− i

h̄
T

∫ 1

0
Eν(s)ds + iγν(T )

}
�(0)

ν (�x, 0). (5.27)

We now use (2.6) and (2.7) to determine the dynamic phase

δν(T ) = T

∫ 1

0
h̄

3∑
j=1

(
νj +

1

2

)
[�j(s) + �̃j (s)] ds (5.28)
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Figure 1. Distribution density n(r) versus radius r for different relations between k and a for the
ground state (ν = (0, 0, 0)). The density n(r) is related to n0, where n0 = n(0)|�̃=0. The radius r
is given in nanometers.

and the Berry phase

γν(T ) =
2∑

j=1

(
νj +

1

2

)∮
C

[
1 − �̃c

2mω2
a

]
1

2ωa

( ρ

m
dm + dρ

)
+

(
ν3 +

1

2

)∮
C

[
1 − �̃c

2m�2
3

]
1

2�3

( ρ

m
dm + dρ

)
+ (ν2 − ν1)

∮
C

H3

H
(
H 2

1 + H 2
2

) [H1 dH2 − H2 dH1]. (5.29)

Here H1,H2 and H3 are components of the magnetic field, H =
√

H 2
1 + H 2

2 + H 2
3 ; C is a

contour in the parameter space.
By analogy with the theory of Bose–Einstein condensates (BEC) [20], we assume that

the solutions of equation (5.24) are normalized by N, where N is the number of the system
particles. Then the function n(�x, t) = |�(�x, t)|2 describes the density of distribution of
the system particles. Consider the effect of nonlinearity on the distribution density n(�x, t)

for the spherically symmetric case �H = 0, ρ(t) = 0. Let us choose the values of the
system parameters corresponding to the Paul trap for Be ions: m = 1.46 × 10−26kg, ω =√

k/m = 2π ×10 MHz [30]. The dependence of the distribution density n(r) on the radius r is
presented in figure 1 for different relations between k and �̃a in the ground state (ν = (0, 0, 0)).
Three cases are considered in the figure: �̃a = 0 (solid line), �̃a = −0.5k (dashed line) and
�̃a = −0.8k (dash-dotted line). Note that the negative values of �̃a refer to repelling particles.
It can be seen that as the mutual repulsion increases, the size of the wave packet also increases,
and, accordingly, the maximum of the density decreases. Such a behavior of the distribution
density is observed for the BEC of alkali metals with repulsively interacting particles [20].
For the chosen system parameters, a critical value �̃a = −k arises when bound states cannot
exist because the external field is not able to confine repelling ions.

To illustrate the effect of the magnetic field on the system, consider the behavior of the
distribution density in an alternating magnetic field of the form H1(t) = H0 cos(ω̃t),H2(t) =
H0 sin(ω̃t),H3 = H0. Here ω̃ is the frequency of the magnetic field, and H0 characterizes the
intensity of the magnetic field. The value of H0 is taken such that ωc = 10ω. The frequency ω̃

is equal to ω/100, providing the adiabatic evolution of the system parameters. Figure 2 shows
the distribution density n(�x, t) in the plane (x1, x3) at different points in time. A change of
the magnetic-field direction causes a redistribution of the density. Such a behavior is due to
the many-dimensional character of the problem under consideration because these solutions
cannot be obtained by a mere multiplication of the one-dimensional solutions.
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(a) (b) (c)

Figure 2. Contour plots of the density n(�x, t) in the plane (x1, x3) at different times within the
period T = 2π/ω̃ of the magnetic field evolution: t0 = 0, t4 = 2π/ω̃ (a), t1 = π/2ω̃, t3 = 3π/2ω̃

(b) and t2 = π/ω̃ (c).

It should also be noted that the distribution density domain contracts with increasing
magnetic field H, while increasing ρ results in its expansion.

The Berry phase (5.29) of the nonlinear equation (1.1) differs from that of the linear
Schrödinger equation (�̃ = 0) by the parameter k̃ instead of k and by an additional summand
proportional to �̃.

Let a = c in (1.4). Then for (�nl/�0)
2 � 1 we obtain

γν(T ) =
2∑

j=1

(
νj +

1

2

)∮
C

[
1 − ξ

(
�nl

ω0

)2] 1

2ω0

(
ρ

m
dm + dρ

)

+

(
ν3 +

1

2

)∮
C

[
1 − ξ

(
�nl

�0

)2] 1

2�0

( ρ

m
dm + dρ

)
+ (ν2 − ν1)

∮
C

H3

H
(
H 2

1 + H 2
2

) [H1 dH2 − H2 dH1],

�nl =
√∣∣∣∣ �̃a

m

∣∣∣∣, ξ = sign

(
�̃a

m

)
, �0 = �3

∣∣
�̃=0 =

√
k

m
− ρ2,

ω0 = ωa

∣∣
�̃=0 =

√
e2H 2

4m2c2
+

k

m
− ρ2.

In the Berry phase theory, the points of the parameter space at which the spectrum of the
instantaneous Hamiltonian degenerates play an important part. For example, the Berry phase
of a two-level system described by the Pauli Hamiltonian is equal to half the solid angle �(C)

that the contour C in the parameter space subtends at a degeneracy point [1].
If the eigenfunctions are real, the parameter space becomes two-dimensional and the solid

angle equals 2π when the contour C encircles the degeneracy and vanishes otherwise.
For system (1.1) the spectrum (4.26) of the instantaneous Hamiltonian Ĥ�(R,�(t))

degenerates as �H = 0. Let us fix the system parameters except for �H(t). Then the Berry
phase (5.29) equals (ν2 − ν1)�(C̃), where �(C̃) is the solid angle in which the contour C̃

is seen from the point �H = 0 in the three-dimensional space of parameters (H1,H2,H3). If,
e.g., H2 = 0 and a plain contour C̃ includes the point �H = 0, then the Berry phase (5.29)
of system (1.1) is multiple of 2π in contrast to the two-level system. When the system has
several points of degeneration there arise a variety of dependences of the Berry phase on the
contour. For such systems, this problem was studied in [46] and the points of degeneracy were
investigated in many papers (see for details, e.g., [47] and references therein).
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Figure 3. Dependence of β(T ) versus ratio T/T0. Here γ0(T ) = −2 is the value of the Berry
phase.

Equation (5.26) can be considered an open path phase (OPP), which can be as important
as the Berry phase [48]. In [46], the OPP was studied for different contours in the parameter
space and both the Berry phase and the OPP were shown to be proportional to π .

The properties of the OPP, including the invariance with respect to the gauge
transformation of the initial function ψn(R) → exp[iµ(R)]ψn(R), were discussed in [48].

Let us illustrate numerically how the phase of the ground state �0(�x, t) of the form (3.32)

is related to the Berry phase. To this end consider the function λ(t) = Arg
√

det C(0)

det C(t)
+ 1

h̄
S(t,C0)

which determines the time-dependent part of the overall phase of the state �0(�x, t). The
function λ(t) tends to the overall phase φ0(t) of the adiabatic wavefunction (2.4) at the
adiabatic evolution (T → ∞). Respectively, the function

β(t) = λ(t) +
1

h̄

∫ t

0
E0(τ ) dτ (5.30)

should tend to the OPP γ0(t) of the form (5.26), and the quantity β(T ) should tend to
the Berry phase γ0(T ) (5.29). To show this we calculate the function β(t) for different
periods T and for the parameters of equation (1.1) which are equal to m = 1.4, k(t) =
ω2m(1 + 0.4 cos(ω̃t)), ρ(t) = 0.8ω sin(ω̃t), ωc = 0.5ω cos(ω̃t), �̃a = �̃c = −0.2ω2m where
ω = 2π × 102. The adiabatic parameter is ω̃/ω = T0/T where T0 = 2π/ω = 10−2, T =
2π/ω̃.

Figure 3 shows values β(T ) for different ratios T/T0. When the ratio increases, β(T )

tends to the Berry phase γ0(T ).
Figure 4 shows the function β(t) for different periods T and the function γ0(t). All curves

are plotted in the same figure for convenience (similar to figure 1 of [46]). It is seen that at
large enough T the functions β(t) and γ0(t) become hardly distinguishable.

Such behavior of β(t) and β(T ) as T increases shows that, indeed, formula (5.29) gives
us the Berry phase for the Hartree-type equation (1.1).

The classical analog of the Berry phase is associated with the Hannay angles (see, e.g.,
[8]). Geometrically, the Hannay angles are similar to the Berry phases. The Berry phase γν

of a quantum system and the Hannay angles �i of the corresponding classical system [7] are
related by

�i = −h̄
∂γν

∂Ii

= −∂γν

∂νi

, i = 1, 3. (5.31)

Here Ii are quantized action variables and νi are quantum numbers. The differentiation in
(5.31) implies that νi is a continuous parameter. In the nonlinear case, it is natural to relate
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Figure 4. The function β(t) of the form (5.30) for different periods T: (1) T = T0, (2) T = 10T0,
(3) T = 50T0; the curve (4) shows γ0(t) obtained from (5.26).

the Berry phase (5.29) with an analog of the Hannay angle by formula (5.31) to obtain

��
1 = −

∮ [
1 − �̃c

2mω2
a

]
1

2ωa

( ρ

m
dm + dρ

)
+
∮

C

H3

H
(
H 2

1 + H 2
2

) [H1 dH2 − H2 dH1],

��
2 = −

∮ [
1 − �̃c

2mω2
a

]
1

2ωa

( ρ

m
dm + dρ

)
−
∮

C

H3

H
(
H 2

1 + H 2
2

) [H1 dH2 − H2 dH1],

��
3 =

∮ [
1 − �̃c

2m�2
3

]
1

2�3

( ρ

m
dm + dρ

)
.

When ρ = 0, the ‘Hannay angle’ ��
1 is equal to the solid angle �(C̃) at which the curve C̃

can be seen from the origin point in the three-dimensional parameter space (H1,H2,H3).
We have defined the Hannay angle in terms of quantum mechanics since the nonlinear

problem requires a special study of the ‘classical equations’ corresponding to the nonlinear
‘quantum’ Hartree-type equation. In our consideration, the part of these classical equations is
played by the Hamilton–Ehrenfest system (3.4), which has no Hamiltonian form with respect
to the standard Poisson bracket.

6. Conclusion

A countable set of solutions has been constructed for the Hartree-type equation (1.2) in the
adiabatic approximation and the corresponding Berry phases have been found in an explicit
form.

In the linear case (�̃ = 0), the Berry phase is completely determined by the solution of
the Hamilton system and the corresponding complex germ [37]. In the nonlinear case, the
Hamilton–Ehrenfest system involves the Hamilton system and the complex germ. For the
quadratic Hartree-type operator (1.2), the Hamilton–Ehrenfest system (3.4) breaks into
the Hamilton system with a self-action (the first equation of (3.4)) and the system in
variations (3.11).

It should be noted that, as in the linear case, the leading term of the asymptotics (5.24)
in the parameter 1/T persists to be an eigenfunction of the nonlinear Hamiltonian (1.2) at
every point in time and only gains a phase factor. However, the Berry phase for the nonlinear
Hartree-type equation (1.1) cannot be calculated by formula (2.8). This is because the linear
superposition principle was essentially used in deriving formula (2.8). The Berry phase is
obtained by extracting the dynamic part (by formulae (2.6), (2.7)) from the overall phase
incursion in the period T.
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There exists a limit as �̃ → 0 for each expression obtained, and the limits agree with the
results of linear quantum theory (see, e.g., [5, 6, 37]).

The geometric Aharonov–Anandan phase [49] is a generalization of the Berry phase for
the case of arbitrary cyclic states (�(T ) = exp[�(T )]�(0)).

The geometric Aharonov–Anandan phase for a linear Schrödinger equation coincides
with the Berry phase in the limiting case of an adiabatically evolving system (T → ∞) [6].

The generalization of the Aharonov–Anandan phase for the cyclic solutions of nonlinear
equations with unitary nonlinearity, to which class equation (1.1) also belongs, is given in
[50].

For the adiabatic evolution of a system, the limit of the Aharonov–Anandan phase,
obviously depends on the type of the nonlinear equation and on the class of functions in which
its solutions are sought. The relationship between the Aharonov–Anandan phase as T → ∞
and the Berry phase for the solutions of the nonlinear Hartree-type equation (1.1) in the class
of functions (3.12) can be the subject of further research.

From the viewpoint of practical implementation in quantum computations, the non-
Abelian Berry phase is important [52, 51] which corresponds to a degenerate spectrum of
the Hamiltonian. The method developed in the present work can be easily generalized for
non-Abelian phases. Note that, in contrast to the linear case, the occurrence of a non-Abelian
phase is related not to the degeneration of the spectrum of the nonlinear operator, but to the
degeneration of the spectrum of the corresponding associated linear operator. A comprehensive
study of this problem is beyond the scope of this work and requires special consideration.
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